
 
 
 
 
 

 

Creating an Open-Source Ecosystem for Contextualized Learning 
in Software Engineering 
Robert Chatley , Ivan Procaccini , Jason Bailey , Zaki Amin , Estibaliz Fraca  
Department of Computing, Imperial College London, United Kingdom. 

How to cite: Chatley, R.; Procaccini, I.; Bailey, J.; Amin, Z.; Fraca, E. (2025). Creating an Open-Source 
Ecosystem for Contextualized Learning in Software Engineering. In: 11th International Conference on 
Higher Education Advances (HEAd’25). Valencia, 17-20 June 2025. 
 https://doi.org/10.4995/HEAd25.2025.20104 

Abstract 
Software engineering education is often detached from real-world practices: 
demonstrations and exercises are limited in scope and fail to capture the complexities 
and architectures found in industrial projects. Smaller tasks might not demand effective 
software design so students may neglect these principles in projects.  

We present a contextualized learning approach to software engineering education: 
within our Computer Science department, we develop bespoke software to support 
teaching and learning with source code made open to student contributions, following 
open-source software practices. This philosophy enables the use of our code in lectures 
as real-world examples and allows students to directly shape the evolution of software 
they use daily, both through occasional contributions and broader internship-like 
summer projects. These initiatives combine theory and practice so students can 
experience software evolution, maintenance, and collaboration first-hand in a 
meaningful context. Our experience could assist other institutions seeking to provide 
authentic, practical experiences in software engineering. 

Keywords: Contextualized learning; software engineering; open-source; real-world 
experiences; professional skills. 

1. Introduction  

Students enrolling on a specialized computer science or software engineering program aim to 
acquire industry-relevant skills and knowledge to advance their careers in the technology sector 
(Kori & Luik, 2020). One problem in teaching these topics effectively is that many aspects of 
software engineering are only visible in large scale software applications and disappear if small 
example systems are used (van Deursen et al, 2017). Notably, many of the challenges in 
software engineering stem from evolving and maintaining a system over time: adding new 
features to meet user needs, or fixing problems, while maintaining correct behavior for existing 

11th International Conference on Higher Education Advances (HEAd’25)
Universitat Politècnica de València, València, 2025
DOI: https://doi.org/10.4995/HEAd25.2025.20104

This work is licensed under a Creative Commons License CC BY-NC-SA 4.0
Editorial Universitat Politècnica de València 610

https://orcid.org/0009-0007-9314-0828
https://orcid.org/0009-0008-0754-5536
https://orcid.org/0009-0003-2342-2118
https://orcid.org/0009-0000-9003-2185
https://orcid.org/0000-0001-6201-7447


Creating an Open-Source Ecosystem for Contextualized Learning in Software Engineering 

 

users (Winters, Manschreck, & Wright, 2020). Creating an authentic scenario where students 
can experience these dynamics is difficult, especially if we teach with synthetic examples that 
exist purely for courses and assignments.  

In this paper, we present our experiences in adopting an educational approach based on 
contextualized learning: we have developed custom departmental software systems with their 
source code open to our students. Our software suite includes a bespoke Virtual Learning 
Environment (VLE) which our students use for all materials and assignments. Building our own 
software has given us three benefits in terms of contextualized education: 1) we can teach 
students how software works using examples from familiar systems; 2) we continuously evolve 
and update these systems, modelling practices of a professional software engineering team; 3) 
we invite students to contribute to the evolution of these systems, particularly by developing 
features that assist in their studies. We encourage collaboration between students and staff, 
allowing students to participate meaningfully in a real open-source software ecosystem. 

2. Contextualizing Learning for Software Engineering 

Computer Science students typically study both theoretical and practical subjects; some of the 
most fundamental technical skills to learn are programming and systems design. Curricula often 
teach several programming paradigms supported by specific programming exercises and 
assignments. However, projects that are small in scope and short in duration do not provide a 
context that necessitates the use of broader software engineering practices. Maintaining a 
system over time is what differentiates programming from software engineering (Winters et al., 
2020). Only with a longer-term view does the need for “professional” practices such as diligent 
use of version control systems, peer code review, or automated quality assurance pipelines 
(Humble & Farley, 2010) become apparent. 

Among several learning theories that provide models to understand and explain how people 
learn, our work is framed in contextual learning theory, or context-based learning (Abu-
Rasheed, H., Weber, C., & Fathi, M., 2023; Perin, 2011), also denoted as Contextual Teaching 
and Learning (CTL) (Hudson & Whilser, 2008). CTL allows teachers to relate subject matter 
content to real world situations (Berns & Erickson, 2001) and states that learning takes place 
when students can construct meaning according to the context of their own lived experiences 
(Berns & Erickson, 2001; Blanchard, 2001). The learning context - the situation in which 
learning takes place - describes not only the learner’s situation, but also the environment and 
the interaction between them. CTL has been applied in teaching other domains such as Industrial 
Engineering and Management (Kukliansky & Rozenes, 2015), giving us confidence to apply it 
in Computer Science. We believe that an appropriate context to build software engineering skills 
is one involving systems of a complexity representative of those found in industry, in a domain 
familiar to the students, with real users to service and demands to be met.  

611



Creating an Open-Source Ecosystem for Contextualized Learning in Software Engineering 

 

While the wide variety of open-source software (see Section 3) available online offers many 
real-world examples, most of these are related to domains unfamiliar to our students. We instead 
chose to make our own software systems open-source, thus creating an effective and accessible 
learning experience for the students in a directly relevant context. 

3. Open-Source Software Development 

The software industry has widely adopted practices of open-source software development 
(Fitzgerald, 2006). Open-source software is that whose source code is made freely available, 
together with a license that permits anyone to view, use, modify, and distribute that source code. 
Open-source software can provide a valuable educational resource by allowing students to see 
“inside the box” of real software systems to understand their workings (Brown & Wilson, 2011). 
Exploring open-source projects is valuable for understanding how real software is structured 
and implemented, but simply browsing their code does not offer the experience of contributing 
code, maintenance over longer time periods, or managing changes in response to real-world 
needs. We think it is valuable to give students experience of contributing to an open-source 
community as part of their education (Spinellis, 2021) and believe that this can help them to 
develop important professional skills during their studies. 

There are millions of open-source software projects (GitHub, 2022). While many are small 
hobby projects, there are significant and widely used open-source projects such as the Firefox 
web browser and the Android operating system for mobile devices. A common characteristic of 
open-source projects, beyond their free availability, is that any software developer in the world 
can submit a code change to implement a new feature or fix a bug. Changes are normally 
considered for inclusion through rigorous review processes. In this way, strong communities of 
maintainers build up around popular projects, and participating in these communities can 
become a key part of a professional software developer’s work. 

Each project has a team of trusted core maintainers. These people have access to edit the code 
directly. For contributions from the wider community, a contributor creates their own copy of 
the code (a fork), modifies their version to add a new feature or fix a problem, and then makes 
a pull request if they would like their changes to be integrated into the main version. These core 
maintainers act as gatekeepers for approving pull requests, reviewing any proposed changes 
carefully and often with extra scrutiny if the author is not a regular contributor to the project. 
The review process typically involves an extended back-and-forth of feedback and amendments 
until the maintainers are satisfied and happy to accept the change.  

This pattern of interaction is standard in open-source communities. A similar style of code 
review process is also typical within commercial software development teams to ensure 
consistent style and high-quality, even if the code in that case is proprietary and closed-source 

612



Creating an Open-Source Ecosystem for Contextualized Learning in Software Engineering 

 

(Capraro & Riehle, 2016). We believe that providing students with an environment in which 
they can practice this type of collaborative development is highly valuable.  

4. Creating an Internal Open-Source Ecosystem 

Our Computer Science department has a long history of developing software to support learning 
and teaching. Although previously more ad-hoc, we took a more structured approach in 2018, 
establishing an internal professional software development team. This team has a dual mission: 
to build systems to facilitate departmental work and support teaching of modern software 
engineering practices. Its software suite includes a VLE, feedback collection systems, project 
allocators and an online examination platform. 

We made a policy decision to make all our new software open-source and accessible to everyone 
in the department, including students and staff. This decision has several benefits. First, 
exposing our software to scrutiny from the very students we train as professional engineers 
motivates our team to uphold the same coding and process standards we teach. This puts us in 
a position to use our software as a real-world example in class. Second, it gives students the 
unique opportunity to contribute as developers to systems they already know as users. This not 
only provides valuable experience for their résumés but also immerses them in an open-source 
development culture. Some staff initially worried that exposing our systems' inner workings 
might enable student exploitation, raising concerns about potential disruption or misuse, 
especially in areas involving assessment. Despite this, we decided that transparency was the 
best policy, especially given the benefits of student partnership and collaboration.  

We welcome individual student contributions throughout the year, each of which goes through 
the typical process of code review described in Section 3. As students are busy, these tend to be 
small but useful changes. Where students have a deeper interest that relates to the educational 
software context, such as working on learning analytics, we can support this as a capstone 
project, which allows more time for development and research to be carried out. We also enable 
more structured forms of partnership with students by offering funded internship-like 
experiences lasting from six to ten weeks over the summer break, where students work 
embedded in our team, developing larger features. In total, there have been 31 distinct student 
contributors on record across our whole ecosystem from 2021-2025. Participating in these 
projects encourages students to engage with professional practices on long-term collaborative 
projects, complementing the technical skills they acquire in the formal curriculum. 

A recent improvement to our VLE arose from informal discussions between students about 
navigating their long student record pages. One student took the initiative to develop filters 
affording a simpler view of upcoming assignments or already graded work. The student coded 
this feature, which the core development team reviewed and integrated. Small improvements 
like this occur naturally to students as some of the primary users of our platforms and these 

613



Creating an Open-Source Ecosystem for Contextualized Learning in Software Engineering 

 

quality-of-life improvements are fundamental for maintaining useful software tools. Being able 
to contribute in this way, to the benefit of themselves and their peers, gives students a strong 
sense of ownership over the software they use and contextualizes their learning. 

In the following section, we present experiences and reflections from students who have 
contributed to these software systems in recent years. 

5. Insights from Student Contributors 

We offer our students the opportunity of joining our team as interns over the summer. We started 
with just two students in the first summer and refined the experience year on year, most recently 
welcoming a cohort of five. The students were involved in the design and development of 
different systems and platforms (often mission-critical) currently in use in the department.  

We conducted a qualitative survey with our past interns, with a mix of open-ended and closed 
questions, and collected 8 responses. In their responses, students reflected on their experience 
with professional software engineering practices, particularly agile workflow, code review, 
deployment with cloud services and task management. 

Respondents recalled several key moments that had a particular impact on the way they 
approach software engineering. A second-year student who worked on our core VLE software 
remarked: “[the team’s] push for small PRs that [they] could review quickly […] set me up well 
to work on changes in a much more incremental manner vs one massive PR in future projects”. 
Directly exposing students to tools that the team uses to ensure rigor and consistency across our 
codebases also seemed to have a long-term impact on the students’ software engineering habits: 
“dev tools like commitlint are pretty much a staple of any project I work on now and are one of 
the first things I set up”. Another student positively emphasized the degree of autonomy and 
initiative they experienced during the project, and how this contributed to their sense of 
ownership over the software: “it was a great experience to design the app outline as a team and 
having the freedom to make these design decisions”.  

Some students reflected on how their placements provided a “first exposure to the public cloud” 
and valued all the skills they developed with respect to cloud technologies. By gaining 
experience with container and virtualization technology, they learned to deploy their work with 
different resources to real users, often with system architectures consisting of multiple services. 

All respondents described their placement experience as integral to their learning within the 
context of their degrees: “It really helped my understanding and made me realize that learning 
these tools is what makes the whole software engineering experience worthwhile”. 

The closed questions were framed within a 5-point Likert ordinal scale. Table 1 shows the 
responses to these questions.  

614



Creating an Open-Source Ecosystem for Contextualized Learning in Software Engineering 

 

Table 1. Responses to scaled questions of the survey completed by 8 summer placement students. 

Question Strongly 
Agree Agree Neither Disagree Strongly 

disagree 

My experience in the team improved the way 
I approach software engineering projects 

6 2 - - - 

The software engineering skills I learnt during 
my time with the team helped me in the 
following academic year(s) 

6 2 - - - 

I would like to contribute to other open-source 
projects after this experience 

2 4 2 - - 

The experience helped me improve the way I 
collaborate in a team 

3 4 1 - - 

The experience helped me develop my soft 
skills 

4 3 1 - - 

Overall, the experience helped me grow as a 
professional beyond what is taught in class and 
labs 

6 1 1 - - 

 

These responses show that students felt working in this context helped them grow as 
professionals. Notably, students declare the experience has helped them improve their approach 
to software engineering projects. This aligns with the contextual teaching and learning theory 
cited in Section 2. However, we are aware of the survey’s limitations, especially its small sample 
size and the time elapsed from the end of the placements. We do not present these results here 
as a systematic study from which definitive conclusions can be drawn; nonetheless, these 
preliminary outcomes and anecdotal experiences suggest there is educational value in the 
approach we followed. This is reflected in the students internalizing our team’s software 
engineering methodology, then applying it of their own accord in subsequent projects. 

6. Recommendations for Educators and Institutions 

Where educators and institutions have the flexibility to select tools for teaching and learning, 
we recommend, where possible, prioritizing the use of open-source software. Open-source tools 
provide rich opportunities for contextual learning: students can explore how the tools they use 
every day actually work, deepening their understanding of complex software systems in an 
environment that feels familiar and meaningful. They may even be able to extend these tools 
themselves and experience contributing to an open-source community. 

While we have chosen to build bespoke tools from scratch, we believe that many of the same 
educational benefits could be achieved by adopting and engaging with third-party open-source 
software. Open educational tools —such as learning management systems, assignment 

615



Creating an Open-Source Ecosystem for Contextualized Learning in Software Engineering 

 

submission platforms, or testing frameworks— can serve as authentic case studies in class, or 
as the basis for exercises and assignments. The key is to allow students to investigate the inner 
workings of real systems in ways that are closely connected to their own lived experiences. 

Some institutions may be understandably hesitant to expose the internals of their software to 
students, however, we encourage a culture of transparency. We do not rely on “security through 
obscurity” in which a system is protected by hiding details rather than effective security 
measures. Instead, we develop application logic in accordance with modern engineering 
practices, keeping confidential configuration and user data isolated and independent. This 
separation of concerns makes the code generally safe to open and is in itself a good lesson in 
software engineering. In our case, sensitive credentials —like those for our databases— are 
stored as secret variables, which are injected into the code at deployment time and are only 
accessible to core maintainers. For local development, we auto-generate realistic yet fake data, 
allowing contributors to work freely without the risk of divulging real information. 

By choosing transparent, open tools and building systems with openness in mind, educators 
may not only enhance learning but also model professional practices that prepare students for 
working with open systems in the real world. 

7. Conclusions 

Our open-source ecosystem, giving students the opportunity to work on large projects relevant 
to their learning, demonstrates the value of contextualized learning in software engineering. By 
making the internals of our departmental software accessible to students, we provide them with 
a real-world environment where they can see professional practices in action, contribute 
meaningfully, and develop skills beyond what is covered in coursework. 

This initiative bridges the traditional gap existing between software engineering theory and 
practice. Through individual contributions and structured internships, students experience 
working with live systems, engage with peer code review, and follow professional quality 
assurance processes, gaining exposure to professional practices commonly used in industry. 
While there were initial concerns about transparency and security, our experience shows that an 
open, collaborative development model fosters accountability, quality, and engagement. 
Allowing students to contribute to the tools they use daily creates a virtuous cycle where 
software development becomes both a learning opportunity and a service to the community. 

Moving forward, we aim to further refine and expand this approach, integrating more structured 
forms of engagement. One possibility is to move beyond contribution being an extra-curricular 
activity and to create an assignment within the curriculum where all students propose and 

616



Creating an Open-Source Ecosystem for Contextualized Learning in Software Engineering 

 

implement a change to our software systems: this would better enable us to assess long-term 
impact on student learning and career readiness. Overall, we believe that this model could serve 
as a blueprint for other institutions seeking to provide authentic, hands-on learning experiences 
in software engineering teaching and learning. 

References 

Abu-Rasheed, H., Weber, C., & Fathi, M. (2023). Context based learning: a survey of contextual 
indicators for personalized and adaptive learning recommendations – A pedagogical and 
technical perspective. Frontiers in Education, 8.  

Berns, R.G., & Erickson, P.M. (2001). Contextual teaching and learning: Preparing students 
for the new economy. (The Highlight Zone: Research @ Zork No. 5). 

Blanchard, A. (2001). Contextual Teaching and Learning. Educational Services. 
Brown A. & Wilson, G. (Ed.). (2011). The architecture of open source applications: elegance, 

evolution, and a few fearless hacks. Lulu.com. https://aosabook.org/en/ 
Capraro, M., & Riehle, D. (2016). InnerSource definition, benefits, and challenges. ACM   

Computing Surveys, 49(4), Article 67. 
Fitzgerald, B. (2006). The transformation of open source software. MIS Quarterly, 30(3), 587–

598. https://doi.org/10.5555/2017296.2017298  
GitHub. (2022, December 6). Octoverse 2022: 10 years of Tracking Open Source. GitHub Blog. 

https://github.blog/news-insights/research/octoverse-2022-10-years-of-tracking-open-
source/ 

Hudson, C.C., & Whisler V.R. (2008). Contextual teaching and learning for practitioners. 
Journal of Systemics, Cybernetics and Informatics, 6(4). pp. 54-58.  

Humble, J., & Farley, D. (2010). Continuous Delivery: Reliable software releases through 
build, test, and deployment automation. Addison-Wesley.  

Kori, K., & Luik, P. (2020). Upper- and lower-secondary students’ motivation to study 
computer science. In: Kori, K., Laanpere, M. (eds) Informatics in schools. Engaging 
learners in computational thinking (ISSEP 2020). Lecture Notes in Computer Science, 
12518. Springer. https://doi.org/10.1007/978-3-030-63212-0_6 

Kukliansky, I., & Rozenes, S. (2015). The contextual learning approach in engineering 
education. In 1st International Conference on Higher Education Advances (HEAd’15). 
Universitat Politècnica de València, Spain. http://dx.doi.org/10.4995/HEAd15.2015.280 

Perin, D. (2011). Facilitating student learning through contextualization: A review of evidence. 
Community College Review, 39(3), 268-295. https://doi.org/10.1177/0091552111416227 

Spinellis, D. (2021). Why computing students should contribute to open source software 
projects. Communications of the ACM. https://cacm.acm.org/opinion/why-computing-
students-should-contribute-to-open-source-software-projects/ 

van Deursen, A., Aniche, M., Aué, J., Slag, R., De Jong, M., Nederlof, A., & Bouwers, E. 
(2017). A collaborative approach to teaching software architecture. In Proceedings of 2017 
ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE '17) (pp. 

617

591–596). Association for Computing Machinery. 
https://doi.org/10.1145/3017680.3017737

https://aosabook.org/en/
https://doi.org/10.5555/2017296.2017298
https://github.blog/news-insights/research/octoverse-2022-10-years-of-tracking-open-source/
https://github.blog/news-insights/research/octoverse-2022-10-years-of-tracking-open-source/
https://doi.org/10.1007/978-3-030-63212-0_6
https://doi.org/10.1177/0091552111416227
https://cacm.acm.org/opinion/why-computing-students-should-contribute-to-open-source-software-projects/
https://cacm.acm.org/opinion/why-computing-students-should-contribute-to-open-source-software-projects/


Creating an Open-Source Ecosystem for Contextualized Learning in Software Engineering 

 

 Winters, T., Manschreck, T., & Wright, H. (2020). Software Engineering at Google: Lessons 
Learned from Programming Over Time. O’Reilly Media. 

618

https://doi.org/10.1145/3017680.3017737

	20104



